Journal of Organometallic Chemistry, 387 (1990) 147–152 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20595

Unstable methoxycyclosiloxanes $[(CH_3O)SiO]_n$ (n = 2, 3): Thermal generation and direct mass spectral studies

J. Tamás *, A. Gömöry, I. Besenyei

Central Research Institute for Chemistry, Hungarian Academy of Sciences, P.O. Box 17, Budapest H-1525 (Hungary)

V.N. Khabashesku *, Z.A. Kerzina, N.D. Kagramanov, I.O. Bragilevsky

N.D. Zelinsky Institute of Organic Chemistry, Academy of Sciences of the USSR, Leninsky Prospekt 47, Moscow, 117913, (U.S.S.R.)

(Received November 22nd, 1989)

Abstract

Direct evidence for formation of unstable methoxy cyclosiloxanes $[(CH_3O)_2SiO]_2$ (1) and $[(CH_3O)_2SiO]_3$ (2) in the gas phase has been obtained by a mass-spectral study of the vacuum pyrolysis of 3,3-dimethoxy-6-oxa-3-silabicyclo[3.1.0]hexane (4). Intermediates 1 and 2 have been detected in the mass spectra of the pyrolysis products of 4 as the corresponding molecular ions, and identified from their exact masses and compositions. The metastable transitions recorded by B/E scan show the fragmentation trends of 1, 2 and 4 under electron impact (70 eV).

The ionization energies (*IE*), determined for $1 (8.81 \pm 0.1 \text{ eV})$ and $2 (8.50 \pm 0.1 \text{ eV})$ are considerably lower than the *IE* of linear methoxysubstituted silanes and alkanes.

Introduction

The simplest 1,3-cyclodisiloxanes $(R_2SiO)_2$ (1, R = H, CH_3 , C_2H_5 etc.) have been postulated as intermediates in various reactions of silanones [1], such as in their transformations into tri- and tetracyclosiloxanes, which are usually stable under normal conditions. However, some of the tricyclosiloxanes $(R_2SiO)_3$ (2), bearing electron-withdrawing substituents R (F, Cl, Br, OCH₃) at the silicon atom, have not been previously isolated owing to their ready oligomerization to more stable linear siloxanes. In this connection, a successful approach to studies of unstable cyclosiloxanes 1 and 2 consists in their generation in vacuo accompanied

^{*} To whom correspondence should be addressed.

by direct investigation by physical methods, viz., vacuum pyrolysis-mass spectrometry. Recently [2], we obtained the first direct mass-spectrometric evidence for the formation of the unstable cyclodisiloxane 1 ($R = CH_3$), which was detected in the mass spectra of the vacuum pyrolysis products of 3,3-dimethyl-6-oxa-3silabicyclo[3.1.0]hexane (3) and its 1,5-dimethyl derivative together with cyclotrisiloxane 2 ($R = CH_3$). This technique was used to generate and directly detect the cyclosiloxanes 1 and 2 ($R = OCH_3$) in this study. The intermediates 1 and 2 have been obtained by the vacuum pyrolysis of 3,3-dimethoxy-6-oxa-3-silabicyclo[3.1.0]hexane (4).

$$\begin{array}{c} \overbrace{\substack{\text{Si}\\\text{(OCH}_3)_2}}^{O} & \xrightarrow{4} \left[(\text{CH}_3\text{O})_2\text{Si} = 0 \right] \longrightarrow (\text{CH}_3\text{O})_2\text{Si} \Big\langle \stackrel{O}{_{O}} \right] \\ (\text{CH}_3\text{O})_2\text{Si} & \xrightarrow{O} \left[(1) \right] \\ (\text{4}) & (1) \\ (\text{4}) & (1) \\ (\text{4}) & (1) \\ + (\text{CH}_3\text{O})_2\text{Si} & \xrightarrow{O} \left[(1) \right] \\ (\text{CH}_3\text{O})_2 \\ (\text{CH}_3)_2 \\ (\text{CH}_3)_2 \\ (\text{CH}_3)_2 \\ (2) \end{array}$$

Experimental

Parent compound 4 was prepared by a published procedure [3], the epoxidation (with p-CH₃OC(O)C₆H₄COOOH) of 1.1-dimethoxy-1-silacyclopent-3-ene, obtained by the reaction of 1,1-dichloro-1-silacyclopent-3-ene with methanol. Epoxide 4 was isolated from the reaction mixture by vacuum distillation at 133°C/90 Torr with a purity of 90%. The structure of 4 was established from ¹H NMR and MS data.

Pyrolysis of 4 was carried out in quartz pyrolyzer (2.5 mm internal diameter) with a 35 mm heated zone ending near the electron beam (~10 mm). The pressure in the vacuum chamber of a mass spectrometer was varied between 0.6×10^{-7} and 4×10^{-7} Torr.

Preliminary information on the products of the vacuum pyrolysis of 4 as well as of the products of the chemical trapping of silanone 5 was obtained by a monopole MKh-7303 mass spectrometer. The determination of the exact ion mass numbers, detection of metastable ions and determination of ionization energies of cyclosiloxanes 1 and 2 were carried out by use of an AEI MS 902 type double focussing mass spectrometer equipped with linked scanning facilities.

Results and discussion

The mass numbers and relative peak intensities of characteristic ions in mass spectra of 4 and its pyrolysis products at pyrolyzer temperatures of 25-1100 °C and at a pressure of 0.6×10^{-7} Torr in the vacuum chamber of a mass spectrometer are listed in Table 1. It was found that 3,3-dimethoxysubstituted epoxide 4, in contrast

m / z	I (%)							
	25	260	400	550	700	820	950	1100
499				1.1	3.9	7.2	7.0	6.1
498				2.3	7.0	12	11.0	9.2
453				1.8	4.8	9.2	9.0	5.2
437				1.8	5.2	8.4	9.0	4.8
407				1.5	5.2	10.0	10.0	8.2
393				3.2	13	19	22	13
392				4.8	20	32	33	21
347				3.2	12	20	24	12
333				2.3	8.7	13	14	9.3
332				4.5	18	28	28	16
318				3.6	19	36	33	21
287				3.4	16	28	34	24
273				16	8.7	16	18	16
257				3.9	19	36	42	31
243				14	65	16	14	14
277				10	42	80	88	48
226				59	30	56	64	38
220				2.2	20	68	60	38
212				1.8	61	14	20	10
107				4.8	23	48	54	28
106				4.1	20	36	44	31
190				7.1 77	20	84	80	55
102				2.1	13	40	47	25
161				2.7	13	30	78	31
107	7.0	67	63	2.1 6.1	14	13	20	21
150	7.0	25	24	0.4 77	20	15	32	31
152	20	23	24	27	120	20	280	170
154	0.0	0.5	0.5	20 5 0	20	110	100	90
151	100	-	100	J.0 100	100	100	100	100
145	100	100	100	100	29	100	100	24
137	26			3.4	20	40	44	24
100	30	20	22	20	22	70	40	40
132	30	22	52 01	32 77	35	20	35	34
131	21	23	20	27	20	28	48	48
130	29	12	12	50 15	17	10	10	70
129	15	15	12	50	52	18 64	68	75
128	43	40	47	20	180	520	570	415
121	2.0	210	210	22	225	320 240	250	240
117	190	210	210	223 69	233	140	160	135
107	120	140	125	160	225	400	440	345
91	130	140	155	200	233	400	0 0	83
90	25	28	27	38	07	6 <i>3</i> 94	100	05
8/	19	85 71	82 71	00	87 07	120	140	120
11	64	/1	/1	02 26	90	130	140	24
74	29	33	29	30	33	40	44	34
61	36	40	41	50	01	110	120	105
59	140	145	150	165	175	200	240	240
54	24	25	29	110	360	1080	1700	1660
53	6.3	7.5	7,4	68	233	720	1200	1400
45	34	38	35	41	65	200	240	203
39	12	15	17	91	305	880	1500	550
31	23	17	15	19	43	240	400	330
29	16	16	14	27.	52	240	520.	090 1020
27	20	23	25	68	190	560	940	1030
15	24	23	22	36	01	160	340	420

Table 1. Mass spectrum of compound 4 at various pyrolyzer temperatures (°C) (70 eV)

to its 3,3-dimethylsubstituted analog 3, does form a rather stable molecular ion at m/z 160 under electron impact. It was difficult to obtain strong mass spectrometric evidence for thermal isomerization of 4 to 1,1-dimethoxy-1-silacyclopent-2-en-4-ol (6), in analogy to that of 3 [2]. These difficulties were caused by coincidence both of molecular and of fragment ions of 4 and 6, but judging by the increased peak intensity of the ion at m/z 160 during pyrolysis of 4 (Table 1), the above-mentioned isomerization does probably take place. The data on changes of the relative intensities of ion peaks, listed in Table 1, indicate that the vacuum pyrolysis of the parent epoxide 4 takes place at 550-1100 °C. During pyrolysis a large increase of the peak intensity of the m/z 54 ion of butadiene relative to that of the m/z 145 ion $([M - CH_3]^+$ ion of parent compound 4), taken as the base peak in mass spectra of pyrolysis products, was observed together with the appearance and growth of m/z212 and m/z 318 ion peaks. The stoichiometry of the reaction (eq. 1), which is similar to the pyrolysis of dimethylsubstituted epoxide 3 [2], indicates that the m/z212 and the m/z 318 ions are probably attributable to methoxycyclosiloxanes 1 and 2, respectively.

The exact masses and elemental compositions of the enumerated ions, which indicate that they arise from the molecular ions of 1 (found 212.019, calc. 212.017, $Si_2O_6C_4H_{12}$) and 2 (found 318.024; calc. 318.025, $Si_3O_9C_6H_{18}$). New ion peaks at m/z 393.012, $Si_4O_{11}C_7H_{21}$ and 499.025, $Si_5O_{14}C_9H_{27}$, were also found in the high resolution mass spectra of the pyrolysis products of 4. These mass numbers may be assigned to the $|M - CH_3O|^+$ ions of the corresponding tetramer and pentamer of silanone 5. Their peak intensities are changed aproportionately to those of the m/z 212 and m/z 318 ions during pyrolysis. This probably precludes the possible formation of the latter ions as fragment ions of the above-mentioned oligomers of silanone 5 and hence the assignment of m/z 212 and m/z 318 ions to the molecular ions of cyclosiloxanes 1 and 2.

The detection of metastable ions by a B/E scan showed the main pathways of fragmentation of both the parent epoxide 4 and the methoxycyclosiloxanes 1 and 2 (Schemes 1, 2, 3) under electron impact.

The fragmentations of compounds 1, 2 and 4 all show the loss of methyl fragment from the corresponding molecular ions. At the same time, the dissociative ionization with loss of methoxyl fragment (Schemes 2 and 3) from molecular ions is also characteristic of cyclosiloxanes 1 and 2. The loss of neutral molecules of butadiene and silanone 5 from the molecular ion of epoxide 4 was not found, which shows the dissimilarity in the mechanisms of vacuum pyrolysis of 4 and its fragmentation under electron impact.

For the determination of ionization energies (*IE*) of cyclosiloxanes 1 and 2 the semilog plotting technique [4] was used. Benzene (*IE* = 9.41 eV [5]) was taken as internal standard. The ionization curves were obtained at pyrolyzer temperatures of 820 °C. The following *IE* values were determined: 8.81 ± 0.1 eV for 1 and 8.50 ± 0.1 eV for 2. These values, being the first physical characteristics of unstable methoxy-cyclosiloxanes, can be also used as analytical characteristics for direct detection of these intermediates in various gas-phase reactions. The *IE* values determined for 1 and 2 are considerably lower than the ionization energies of methoxysubstituted linear molecules, CH₃OCH₃ (10.0 ± 0.02 eV [6]), (CH₃O)₂CH₂ (9.98 ± 0.03 eV [6]) and CH₃OSi(CH₃)₃ (9.79 eV [6]), which indicates that electron loss from cyclosiloxane ring is more facile than that from the methoxyl substituents in 1 and 2.

Scheme 1. Fragmentation of epoxide 4 under electron impact conditions (70 eV). \times denotes 2nd field free region (F.F.R.) metastable transition.

Despite the fact that the molecular ion of silanone 5 $(m/z \ 106)$ was not detected in the mass spectra of the pyrolysis products of 4, the identification of cyclosiloxanes 1 and 2 under the conditions studies may be regarded as indirect evidence for the formation of the intermediate 5 in reaction 1. More indirect evidence for formation of 5 was obtained by co-pyrolysis of epoxide 4 with methanol $(4/CH_3OH = 1:1)$, which was used as the trap for silanone 5. Hexamethc :ydisiloxane (6) *, a

Scheme 2. Fragmentation of cyclosiloxane 1 under electron impact (70 eV). \star denotes 1st (observed by B/E scan), and \times denotes 2nd F.F.R. metastable transition.

Scheme 3. Fragmentation of cyclosiloxane 2 under electron impact (70 eV). \star denotes 2nd F.F.R. metastable transition.

product of the chemical trapping of 5, was detected in the mass spectra of the reaction products of eq. 2.

$$4 \xrightarrow{\Delta} [(CH_3O)_2Si = O] \xrightarrow{CH_3OH} (CH_3O)_3SiOH \xrightarrow{(CH_3O)_3SiOH} (CH_3O)_3SiOSi(OCH_3)_3 (2)$$
(6)

Direct mass spectral detection of silanone 5 is hampered, as in the case of silaacetone, $(CH_3)_2Si=0$, by a constant, low concentration of 5 in the gas phase, owing to the zero activation barrier of dimerization of silanones [7], which occurs mainly on the walls of quartz pyrolyzer. Only by allowing the accumulation of 5 by freezing the pyrolysis products of 4, have we managed to identify this intermediate by matrix isolation-IR spectroscopy [8].

Acknowledgment

We express out gratitude to Dr E.V. Shulishov for his assistance and to Dr V.I. Kadentsev for fruitful discussions.

References

- 1 G. Raabe and J. Michl, Chem. Rev., 85 (1985) 419.
- 2 J. Tamás, A. Gömöry, I. Besenyei, O.M. Nefedov, V.N. Khabashesku, Z.A. Kerzina, N.D. Kagramanov and A.K. Maltsev, J. Organomet. Chem., 349 (1988) 37.
- 3 G. Manuel, G. Bertrand and F. El Anba, Organometallics, 2 (1983) 391.
- 4 F.P. Lossing, A.W. Tickner and W.A. Bryce, J. Chem. Phys., 19 (1951) 1254.
- 5 R.E. Honig, J. Chem. Phys., 16 (1948) 105.
- 6 L.V. Gurvich, G.V. Karachevtsev, V.N. Kondratyev, J.A. Lebedev, V.A. Medvedev, V.K. Potapov and J.S. Khodeev, Ionization Potentials and Electron Affinity (in Russian), Nauka, Moscow, 1974.
- 7 T. Kudo and S. Nagase, J. Am. Chem. Soc., 107 (1985) 2589.
- 8 V.N. Khabashesku, Z.A. Kerzina and O.M. Nefedov, Izv. Akad. Nauk SSSR. Ser. Khim. 9 (1988) 2187; J. Organomet. Chem., submitted.

^{*} Mass spectrum of compound 6 was kindly provided by Prof. V.N. Bochkarev.